If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1.8x-0.128=0
a = 1; b = 1.8; c = -0.128;
Δ = b2-4ac
Δ = 1.82-4·1·(-0.128)
Δ = 3.752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.8)-\sqrt{3.752}}{2*1}=\frac{-1.8-\sqrt{3.752}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.8)+\sqrt{3.752}}{2*1}=\frac{-1.8+\sqrt{3.752}}{2} $
| 15-2(x+5)=11 | | 60*x=+300 | | x=1/4*1-3 | | -1=1/4x-3 | | 4x-3÷3=x+8÷2 | | 56.04+1c=80.04 | | x^2+1.8x-0.148=0 | | 9x-20=-7 | | 2x/3-5=x/4+12 | | x(.12)=150000 | | xX.12=150000 | | 11+2x=3(x+5) | | 3x=10x-98 | | 64+3k=88 | | 2(x+17)=24 | | x^2+0.842x-0.0876=0 | | 0=(1/4)x^2 | | -1=(1/4x)^2 | | 6c+1=40 | | 6+1c=40 | | 2x+79=x | | 2=-3y-10 | | 6w+13=0 | | 1+2t=47 | | 7n-5=5 | | -5x^2-6=0 | | 13+2c=19 | | -15=-(5/9*x) | | 9x^2+4x-6x=-5x+8 | | 3x=8=68 | | 5x÷5=16 | | -3(4+7x)=93 |